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ABSTRACT

We address the problem of classifying time

series according to their morphological fea-

tures in the time domain. In a supervised

machine-learning framework, we induce a

classification procedure from a set of preclas-

sifted examples. For each class, we infer a

model that captures its morphological fea-

tures, using Bayesian model induction and

the minimum message length approach to

assign priors. In the performance task, we

classify a time series in one of the learned

classes when there is enough evidence to

support that decision. Time series with suf-

ficiently novel features, belonging to classes

not present in the training set, are recognized

as such. We report results from experiments

in a monitoring domain of interest to NASA.

INTRODUCTION

Performance improvement in classification
tasks has been a traditional area of machine

*This research has been supported by a grant from

NASA Ames (NAG 2-834).

learning. The objects to be classified are

usually described by time-invariant attribute

values. Our research is motivated by appli-

cations in temporal and sequential domains.

In such domains, an object's properties often

vary with time; objects are described by a

time series of values for each attribute.

This paper focuses on learning to classify

time series based on the morphological fea-

tures of their behavior over time (i.e., the

shape of their plots). We study univariate

time series, where each object is described by

one time-varying attribute. The term signa-

ture will be used synonymously with the term

univariate time series.

INDUCTION OF CLASS MODELS

AND CLASSIFICATION

A set of preclassified signatures (the training

examples) are presented to the learner simul-

taneously. Given that signatures in the same

class share morphological characteristics, we

design a learner that infers class models, rep-

resented by functions of time, that capture

them. Functions in the space we consider can

be decomposed into a set of polynomials and

intervals, with one polynomial per interval.

For example, Figure 1 shows a signature and

the class model induced from it. We use a

Bayesian model induction technique to find
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Figure 1: A signature (S) and the class model

induced from it (M).

the function best supported by the training

data [1]. For each class we search for the

model M with maximum posterior probabil-

ity in light of prior information I and training
data D.

P(MID, I) = P(MII) P(DIM'I)
P(D[I)

(:)

To assign priors, P(MII), we use the min-

imum message length approach [5, 6]. The

negative logarithm of the prior probability of

a model, -log 2 P(MII), is equal to the the-

oretical minimum length of a message that

describes M in light of prior information I.

Similar techniques have been used for surface

reconstruction in computer vision [3], and for

learning engineering models to support design

[4], among other applications.

Class models are parameterized, thus the

search for the best model extends in the space

of parameters. We use the parameters in

[3] and an additional precision parameter.

Each class model has a partitioning of the

time domain into a sequence of intervals.

For a given interval we search through all

possible families of parameterized models; we

use polynomials of up to degree two, but,

the method can be easily generalized. To

facilitate probabilistic predictions, we assume

a Gaussian noise model and independence

of sampling errors. We also assume that

the variance of the noise distribution is

constant over an interval. For each interval

we estimate the coefficients of the polynomial

and the variance of the noise that maximize

the posterior probability of the model.

After training, given a signature, S, and

a set of class models, the goal is to find

the model most likely to be correct for the

signature in light of the prior knowledge. We

treat this as a hypothesis testing problem:

for each class, C, we compute the evidence,

e(C]D, I), that S is an object of the class C

[2]:

P(CID, I)]e(CID, I) = 10log:0 P(-CID,_ (2)

The probability that S belongs in a class

other than C, P(CID, I), is computed from

the posterior probabilities of all other classes

and from the posterior probability of a special

"novel" class. The likelihood of the "novel"

class is set to zero when any of the known

classes has a non-negligible likelihood. When

all known classes have low likelihoods, its

likelihood is computed so that it tends to one

as the maximum likelihood among the known

classes tends to zero. The prior of the "novel"

class is set to an arbitrary low value. Under

normal circumstances, the "novel" class plays

no role in the computation of evidence,

because of its very low posterior. Only

when all known classes have low posterior

probabilities, does the "novel" class become a

viable alternative.

A MONITORING APPLICATION

The Electrical Generation and Integrated

Loading (EGIL) controllers at NASA monitor

telemetry data from the Shuttle to detect
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various events that take place onboard.

Typically, an event is the onset or termination

of operation of an electrical device on a power

bus. Each event has a signature with a set of

distinguished morphological characteristics,

based on which the controllers identify them.

There are over two hundred different events of

interest, making their accurate identification

a challenging task.

Signatures are extracted from the teleme-

try stream whenever a change in one of the

currents is detected that exceeds a preset

threshold. All signatures have the same dura-

tion (6 sec. after the triggering change), and

their baselines are normalized by subtracting
a suitable DC value.

We have designed a set of experiments to

demonstrate the feasibility of automating

the classification of EGIL signatures using

CALCHAS, a Bayesian induction system for

time series data. Here we focus on the effect of

training in classification performance. We use

the percentage of correctly classified instances

as our dependent measure of learning. In our

experiments there are ten classes of signatures

for ten different events; the average number of

signatures per class is about 65. Our current

implementation only handles univariate time

series. There are many three-dimensional

signatures in the EGIL domain; in these cases

we ignore two of the phases.

In each run, we train CALCIIAS on an equal

number of randomly selected signatures from

each class. We then evaluate its performance

on the remaining signatures. We vary the

amount of training by using different training

set sizes. The results with training sizes

of one and eight are summarized in the

confusion matrix shown in Table 1. Each

entry of the table shows the percentage of

test signatures, in the class labeling the row,

that were classified by CALCHAS to the class

labeling the column. The top row for each

class was obtained after training CALCHAS

with one signature per class; the bottom row

was obtained with training sizes of eight.

All percentages are averaged over twenty

runs; the standard deviations are shown.

For example, with a training set of eight

signatures, an average of 74% of the Wcs test

signatures were correctly classified as Wcs,

and 1% and 25% were incorrectly classified as

RcR and NOVEL, respectively. In general, the

matrix diagonal indicates the percentage of

correct classifications. Entries corresponding

to UN1 and UN3 are for signatures whose

actual class was unknown.

Table 1 indicates that increased training

results in higher classification accuracies. A

notable exception seems to be the GAL class,

where training with eight signatures results

in significantly lower accuracy than training

with one signature. We suspect that GAL is

an example of a disjunctive concept: there

is more than one pattern of morphological

features describing signatures in the class.

CALCHAS is currently unable to handle

disjunctive concepts; training on multiple

patterns for a class results in a confused class

model and thus lower classification accuracy.

Beyond the practical advantages of au-

tomatic vs. manual monitoring, a Bayesian

learning approach offers the following techni-

cal advantages. It provides a principled way

of discerning the distinguishing features of a

signature from measurement noise; it miti-

gates the problem of overfitting. CALCItAS

provides an estimate of the confidence in each

classification. When more than one classi-

fication is supported by roughly the same

evidence, we can recognize this fact and re-

port it, as opposed to making an arbitrary

classification. Similarly, we can report when

no classification is supported with significant

evidence. Signatures with sufficiently novel

features, belonging to classes not present in

the training set, are recognized as such and

are classified as NOVEL; potentially costly

classification mistakes are avoided.
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Table 1: Classification of EGIL signatures (assumed univariate--see text).

CLASS PHO

PHO I 404-29

8 964-5

VAC I

8

AWCS 1

8

H20 1 2+9

8

CAB 1

8

PRP 1

8

WCS 1

8

TPS 1 74-14

8 8+7

RCR 1

8

GAL 1 24-1

8 224-40

UNI I 464-10

S 55+4

UN3 1 94-5

8 184-2

VAC Awcs H20 CAB PRP Wcs TPS RCR GAL

14-4 24-7 574-29

44-5

684-32

934-2

924-22 54-22

964-2

984-9

1004-0

134-2

12:[:1

204-4

154-1

794-17

904-16

984-4 24-4

984-2 24-2

NOVEL

324-32

74-2

34-1

44-2

224-17

104-16

524-28 14-0 474-28

744-4 14-0 254-4

764-17 34-5 154-11

854-8 74-7

24-0 974-1

34-0 974-0

98_0

784-40

124-2 34-2 24-1 224-9 2±0

124-3 14-1 34-1 154-7 24-0

304-4 814 44-1 94-3 204-0

2912 11_2 4±1 3_2 204-0
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